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er canopies results from the size and arrangement of trees within a stand and is a
first-order term controlling radiance from forested terrain at common pixel scales of tens of meters. Although
self-shadowing is a useful attribute for forest remote-sensing classification, compensation for the
topographic effects of self-shadowing has proven problematic. This study used airborne canopy LiDAR
measurements of 80 Pacific Northwest, USA conifer stands ranging in development stage from pre-canopy
closure to old-growth in order to model canopy self-shadowing for four solar zenith angles (SZA). The
shadow data were compared to physical measurements used to characterize forest stands, and were also
used to test and improve terrain compensation models for remotely sensed images of forested terrain.
Canopy self-shadowing on flat terrain strongly correlates with the canopy's geometric complexity as
measured by the rumple index (canopy surface area/ground surface area) (R2=0.94–0.87 depending on SZA),
but is less correlated with other stand measurements: 95th percentile canopy height (R2=0.68), mean
diameter at breast height (dbh) (R2=0.65), basal area ha−1 (R2=0.18), and canopy stem count ha−1 (R2=0.18).
The results in this paper support interpretation of self-shadowing as a function of canopy complexity, which
is an important ecological characteristic in its own right. Modeling of canopy self-shadowing was used to
assess the accuracy of the Sun-Canopy-Sensor (SCS) topographic correction, and to develop a new empirical
Adaptive Shade Compensation (ASC) topographic compensation model. ASC used measured shadow (as an
estimate of canopy complexity) and the SCS term (to describe the illumination geometry) as independent
variables in multiple regressions to determine the topographic correction. The ASC model provided more
accurate radiance corrections with limited variation in results across the full range of canopy complexities
and incidence angles.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

The ability to use canopy self-shadowing to classify and derive
stand parameters in forest remote sensing has long been recognized
(e.g., Li and Strahler, 1985). Because stands with trees of different sizes,
shapes, and arrangements cast different amounts of shadow, self-
shadowing as a fraction of the image correlates with the complexity
of the canopy structure. This allows classification based on forest
structure using differences in the canopy self-shadowing (Fig. 1a–b).
Table 1 summarizes terminology related to shadowing as used in this
paper.

Canopy self-shadow is frequently used in spectral mixture analysis
(SMA) of moderate-resolution images (e.g., Landsat Thematic Mapper,
TM), to analyze canopy structure at sub-pixel scales. SMA estimates
sub-pixel fractions of spectrally distinct and physically meaningful
endmembers as estimates of the proportion of materials in an image
).

l rights reserved.
(Adams and Gillespie, 2006; Adams et al., 1993, 1995; Foody, 2004;
Settle and Drake, 1993). In images of forest landscapes, spectral
endmembers for green vegetation (GV), non-photosynthetic vegeta-
tion (NPV) such as wood, soil, and topographic shading and shadow
(spectrally grouped as “Shade”: Adams and Gillespie, 2006) are
commonly used. At pixel scales of tens of meters, canopy self-
shadowing is the dominant contribution to Shade for conifer forests
(e.g., Gillespie et al., 2006).

Adams et al. (1995) used Shade to distinguish between Amazonian
forest types based on the self-shadowing differences of dominant tree
species. Peddle et al. (1999) found that use of the Shade endmember
improved estimation of boreal forest biophysical properties. Lu et al.
(2003) used SMA with the Shade endmember for Amazonian forest
classification and biomass estimation. Sabol et al. (2002) used the Shade
fraction in the Pacific Northwest, USA, to rank stands by structural stage
from early canopy closure (20–30 years old) through old-growth
(N200 years old). Tottrup et al. (2007) found that increases in the Shade
fraction corresponded with greater forest maturity in Southeast Asia.

Although the use of canopy self-shadowing is perhaps best
developed with SMA, it is also used with other remote-sensing

mailto:vkane@u.washington.edu
http://dx.doi.org/10.1016/j.rse.2008.06.001
http://www.sciencedirect.com/science/journal/00344257


Fig.1. Effect of canopy complexity and topography on tree shade. Simple forest canopies (a) create less tree shade than complex canopies (b). For any stand within a forest, topography
decreases tree shade on sun-facing slopes and increases tree shade on slopes facing away from the sun, changing the area of sunlit canopy (bright canopy areas). Variations in
topography can mimic variations in canopy complexity, increasing the difficulty of classifying stand complexity (c). Bright areas on tree figures in 1-c show sunlit canopy area; rest of
canopy areawould be in shadow. This study uses LiDAR-derived canopymodels (d) and adjusts the underlying topography to represent the canopy as it would exist on flat terrain (e).
Tree shade is then modeled using the hillshade function of ArcGrid with 183 slope-aspect combinations (f) and 80 canopy surface models.

Table 1
Terminology related to the spectral endmember shade

Term Definition

Shading Darkening due to illumination variation controlled by viewing and
illumination geometry

Shadow Dark image object resulting when topographic objects block
sunlight

Self-shadowing Unresolved shadowing due to objects (e.g., trees) within a pixel as
opposed to shadowing from resolved shadowing from up-sun
objects in other pixels

Shade
(capitalized)

Low-amplitude spectrum used as a spectral endmember in
spectral mixture analysis and resulting from a combination of
shading and unresolved shadows, or from resolved shadows
(Adams and Gillespie, 2006)

shade
(uncapitalized)

Generic term for shading and shadowing in the landscape and not
restricted to the spectral sense of Shade as used in Spectral Mixture
Analysis

Hill shade,
topographic shade

Darkening due to shading as defined above, by topography and
solar illumination angle

Tree shade Darkening due to canopy self-shadowing generally calculated
assuming trees are solid, opaque objects

Leaf shade Unresolved shadowing within a tree caused by leaves, stems, and
other elements comprising the tree

Geometric shade Darkening due to changes in incidence angle across the surfaces of
the individual elements of the tree
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methodologies. Shadow is an important component of the Tasseled
Cap Wetness transformation that has been used to classify forests
based on structural stage (Cohen and Spies, 1992). The proportion of
area in tree shadow also has been used in high-resolution (b1 m)
satellite remote sensing to estimate forest biomass (Leboeuf et al.,
2007) and to estimate diameter at breast height (dbh) and crown area
(Greenberg et al., 2005).

Correlation of Shade with ground-measured stand characteristics
has proven difficult. Many remote-sensing studies use data such as
tree species, dbh, and tree stem density from ground-level plot studies
to interpret and validate their satellite images (e.g., Song and
Woodcock, 2002). Ground-level measurements, however, commonly
correlate poorly with the canopy surface as seen in satellite images,
making the interpretation of Shade ambiguous. Allometrically derived
canopy surfaces may understate the complexity of canopies, under-
lining the need for more quantitative measures of fine-scale structure.
Topographically induced changes in shading and shadowing create
additional ambiguity and are major sources of variation in Landsat
images (Gu and Gillespie, 1988).

This study directly examines the relationship of canopy structure
and self-shadowing. Airborne LiDAR (LIght Detection And Ranging)
data were used to model the exposed canopy surface of 80 conifer
stands in the Pacific Northwest ranging from pre-canopy closure to
old-growth. We use the LiDAR data to address two questions essential
to forest studies that use tree shade:

• How well do common measures of stand characteristics correlate
with innate canopy self-shadowing?

• Can the topographic influence on self-shadowing be removed while
preserving the innate, topographically independent Shade differ-
ences between closed-canopy conifer stands (i.e., tree shade of
horizontal surfaces plus leaf shade)?

In this paper, we first investigate the correlation of canopy
shadowing to common measures of stand characteristics. The use of
canopy shadowing to analyze forest conditions requires that purely
topographic effects on canopy shadowing be accurately corrected.
Therefore, we next investigate canopy shadowing and models that
relate shadowing to geometric factors of slope and illumination. We
then test the leading topographic correction model (SCS) with canopy
shadowing as measured from LiDAR digital elevation models (DEMs).
Finally, we substitute an empirical function relating canopy shadow-
ing to geometric factors into radiance correction models for the
suppression of topographic effects. We call this the Adaptive Shade
Compensation (ASC) model. Because canopy shadowing is a dominant
factor controlling canopy radiance (Gu and Gillespie, 1988), shadow-
correction models are also radiance correction models that can be
used for reducing the effects of topography in images.

1.1. Forests and tree shade

Canopy complexity of conifer forests in the Pacific Northwest
generally increases as stands mature (Franklin and Dyrness, 1988;
Franklin et al., 2002). At canopy closure, stands are characterized by
short trees (relative to their mature heights), high tree densities, and
homogeneous canopies (Acker et al., 1998; Franklin et al., 2002; Oliver
and Larson,1996). As stands develop, they have fewer but taller canopy



Table 2
Nomenclature (a) and equations (b) commonly discussed for topographic correction of
radiance for conifer canopies

(a) Nomenclature

Symbol Explanation

i Incidence angle (degrees)

θ Solar Zenith Angle (degrees)

α Slope (degrees)

ϕ Terrain azimuth relative to sun (degrees)

L, Ln Illumination for uncorrected and corrected topography (units)

k Minnaert correction constant

e Exitance angle (degrees)

C C correction constant

b0, b1, b2 Coefficients for linear regressions

ɛ Energy falling on a pixel per unit time (W)

Es Solar terrestrial irradiance (W m−2)

S, Sn Pixel surface area (m2) for uncorrected slopes and corrected horizontal
slopes, respectively

I, In Average irradiance on canopy surface (W m−2) for corrected and
uncorrected slopes, respectively

A, An Sunlit canopy area on a surface within a pixel (m2) for uncorrected and
corrected, and flat slopes respectively. A measured from LiDAR data and
hillshade modeling; An estimated using topographic correction functions.

ShA, ShAn,
ShAflat

Shadowed canopy area (proportion) for uncorrected, corrected, and flat
slopes respectively. ShA and ShAflat measured from LiDAR data and
hillshade modeling; ShAn estimated using topographic compensation
functions. Used as estimates of the SMA Shade fraction from tree shade.

(b) Equations
Notes Equation

Incidence angle cos i ¼ cos θ cosα þ sinθsinα cos/ (1)

Cosine correction
Ln ¼ L

cos i
(2)

Modification of cosine correction
proposed by Teillet et al. (1982) Ln ¼ L

cos θ
cos i

(3)

Minnaert correction (Minnaert, 1941)
cosine correction (Eq. (3)) modified
with an empirically derived value k

Ln ¼ L
cos θ
cos i

� �k (4)

where k is derived from

L ¼ Ln cosk i
� �

cosk−1 e
� � (5)

C correction (Teillet et al., 1982)
modifies the cosine correction
(Eq. (3)) with a C constant that is
empirically derived using the
relationship between measured
illumination and incidence angle. C
term moderates over correction at
extreme cosi values.

Ln ¼ L
cosθþ C
cosiþ C

(6)

where

L ¼ b0 þ b1 cos i; andC ¼ b0
b1

(7)

SCS correction (Gu and Gillespie,
1988) corrects radiance by estimating
sunlit area as a fraction of total
canopy area.

Ln ¼ L
cos α cos θ

cos i
(8)

SCS+C correction (Soenen et al., 2005)
adds C term calculated through Eq. (7)
to SCS correction to moderate over
correction at extreme extreme cosi
values.

Ln ¼ L
cos α cos θþ C

cos iþ C

(9)
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trees and heterogeneous, deeply structured canopies. A LiDAR study
of Pacific Northwest conifer canopies found that canopy complexity
(rugosity) increased with stand age (Ogunjemiyo et al., 2005). Canopy
self-shadowing also increased when measured by the SMA Shade
endmember as canopies age and develop more complex structures
(Roberts et al., 2004; Sabol et al., 2002).

Considerable variation exists within this overall pattern of canopy
development. Within the young age class, stand complexity varies
at fine scales based on establishment patterns (Winter et al., 2002a)
and local disturbances (Lutz and Halpern, 2006) and at coarser scales
based on stand-management practices such as the density of re-
planting, herbicide application, and mechanical thinning (Smith et al.,
1997). Within old-growth age classes, canopy complexity depends on
a stand's disturbance history (Bradshaw and Spies, 1992; Franklin and
Van Pelt 2004; Franklin et al., 2002; Larson and Franklin, 2006;Winter
et al., 2002b; Zenner, 2004). Edaphic, topographic, and climatic factors
can introduce additional variation (Poage and Tappeiner, 2005).

This study examines the relationship between common measures
of stand structure (e.g., mean dbh) and two sources of spectral Shade.
Tree shade consists of the visible shadows cast by one tree or branch on
another, and is created by the geometric complexity of the canopy
(Fig. 1). It does not include any topographic shading, as modeled by
cosine and related models that assume smooth, diffuse surfaces. Topo-
graphic shade in forested terrain is the reduction of scene radiance
through changes in the area of tree shade caused by topography and
solar zenith angle. Thus tree shade is a function of the shape and spacing
of trees, and also terrain. In this paper, stand and canopy complexity
refer to the size and arrangement of trees and the geometric complexity
of the canopy surface and not to other sources of complexity such as
species diversity.

1.2. Previous efforts at forest topographic compensation

Topography changes the radiance measured in remotely sensed
images. It is commonly assumed that for smooth terrain, irradiance –

and hence radiance – is controlled by the sun-terrain-sensor geometry
alone, but in forests shadowing is the dominant source of spatial
variance (Gu and Gillespie, 1988).

A number of papers have proposed methods to compensate for
topographic variation of radiance of forest scenes (Table 2) (Dymond
et al., 2001; Gu and Gillespie, 1988; Soenen et al., 2005, Soenen et al.,
2008; Teillet et al., 1982; Vincini and Frazzi, 2003). The radiance cosine
correction (Eq. (3)) (Teillet et al., 1982), for example, attempts to
compensate for topography by normalizing the sun-terrain-sensor
geometry,without consideration of shadowing. Radiance cosine-based
corrections assume that the surface is a perfect diffuse reflector. Teillet
et al. (1982) also suggested the use of theMinnaert radiance correction
(Eq. (4)) (Minnaert, 1941), which empirically modifies the cosine cor-
rection through a constant k that is derived through a regression that
determines how closely the observed surface behaves as a diffuse
Lambertian reflector. The radiance C correction (Eq. (6)) (Teillet et al.,
1982) modifies the cosine correction (Eq. (3)) with a C constant that is
empirically derived using the relationship between measured illumi-
nation and incidence angle to moderate over- and under-correction at
extreme pro- and anti-sun slopes. Teillet et al. (1982) found, however,
that the Minnaert and C empirical corrections did not improve conifer
forest classification accuracy.

Gu and Gillespie (1988) directly addressed the problem of
topographic correction of conifer forests and approached the problem
by recognizing the dominant role of shadowing. Cosine-based
corrections assume that changes in image radiance were caused by
changes in the angle between the sun, surface, and sensor. Forests,
however, present a special case for topographic correction because
trees growgeotropically (uprightwith respect to Earth's gravity) rather
than perpendicular to local slopes. The slopes of the surfaces within a
tree canopy that reflect light, therefore, do not changewith changes in



Fig. 2. Radiance from tree canopies is independent of changes in topography. In this
illustration, the distance between the two trees and the sun angle prevents shadowing
of one tree by another. If the canopy of each tree is the area of one pixel and the pixels
are centered on each tree, then the radiance observed from each treewould be identical,
even though the underlying surface topography is different.

Fig. 3. Changes in area of canopy self-shadowing calculated from canopy surface models (CSM
the same as those used for Figs. 4 and 7. Changes in self-shadowed area from different top
unmixing. Solar zenith angle was 33°. Each CSM was 60×60 m.
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underlying topography. As a result, the radiance from the illuminated
portion of a tree remains constant regardless of the underlying
topography (Fig. 2) (Gu and Gillespie, 1988; Soenen et al., 2005).

Gu and Gillespie (1988) observed, however, that topography did
change the relative placement of trees with respect to each other and
the sun. As a result, the mutual shadowing of trees changes with
changes in topography (Figs. 1 c and 3). When shadowing increases on
anti-sun slopes, less area of the canopy is sunlit and reflectance mea-
sured by the sensor is reduced. As slopes become progressively more
pro-sun, the area of shadowed canopy decreases, the area of sunlit
canopy increases, and radiance measured by the sensor increases.
Because the slopes of surface elements such as leaves within the
canopy itself do not changewith topography, changes in reflectance or
radiance with topography are caused by changes in the area of sunlit
canopy. Gu and Gillespie (1988) developed their radiance Sun-Canopy
s) derived from LiDAR data for canopy surfaces used in this study. Canopy surfaces are
ographies would change both measured radiance and the Shade fraction from spectral



Table 3
Mathematical derivation of SCS equation (from Gu and Gillespie, 1988)

Notes Equation

Total solar energy intercepted by a pixel is a
function of irradiance, pixel area, and the
incidence angle

e ¼ EsS cos i (10)

Total area of the sunlit portion of the canopy
can be estimated using the average irradiance
of the sunlight canopy

A ¼ e
I
¼ EsSIn cos i

(11)

Ratio of the sunlit portion of the canopy on
sloped terrain to flat terrain

A
An

¼ EsSIn cos i
EsSnIcos θ

(12)

Simplification using I= Io and substituting
So=Scos(α)

A
An

¼ cos i
cos α cos θ

(13)

Expression in terms of radiance, where radiance
is determined by sunlit areas. Ln and An have
inverse relationships because of Eq. (15)

L
Ln

¼ A
An

¼ cos i
cos α cos θ

(14)

Re-arrangement of terms
Ln ¼ L

cos α cos θ
cos i

(15)

Unlike traditional topographic correction equations that normalize the geometry of the
surface, SCS normalizes the relative area of sunlit versus self-shadowed canopy. Full
discussion of the derivation of the SCS equation can be found in Gu and Gillespie (1988).
Nomenclature defined in Table 2.

Fig. 4. Relationship of the SCS term (Eq. (19)) to the correct A/An correction factor as
determined by LiDAR for four plots with different canopy complexities (rumple indices).
Higher rumple indices indicate more complex canopies. Correction factors shown for
slopes in the principal plane (azimuth relative to the sun of 0° and 180°). The SCS
correction factor is fixed for each SZA for a given slope and azimuth, while the A/An

changes with canopy complexity. Correction factors for simple canopies (rumple b2)
follow different curves than correction factors for complex canopies. Therefore, using
the SCS geometric correction factor results in different correction accuracies depending
on the canopy complexity.
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Sensor (SCS) radiance correction (Table 2, Eq. (8)) based on changes of
sunlit canopy area rather than attenuated irradiance caused by topo-
graphic changes (Table 3, Eq. (13)).

Gu and Gillespie (1988) predicted the sunlit area An on a horizontal
slope

An ¼ A
cos α cos θ

cos i
ð16Þ

as a function of A, the sunlit area on a slope, and the slope α and solar
zenith angle, SZA (in the principal plane incidence angle i is the
difference between α and SZA).

Because all portions of a canopy are either sunlit or shadowed,

S ¼ An þ ShAn ð17Þ

and

ShAn ¼ S−An absolute areað Þ or ShAn ¼ 1−An proportional areað Þ ð18Þ

it is clear that the SCS term

cosi
cosα cos θ

ð19Þ

is also related to the area of shadow as well as the sunlit area. SCS
values decrease as topography slopes away from the sun and increase
as topography slopes towards the sun (Fig. 4). This matches the
expected behavior of canopy self-shadowing where the sunlit area
increases as slopes become progressively more pro-sun.

Gu and Gillespie (1988) acknowledged several limitations of their
correction. First, like the radiance cosine correction on which it is
based, it over-corrects on anti-sun slopes. Soenen et al. (2005)
proposed adding the C term to SCS to reduce this problem (SCS+C
correction: Eq. (9)). Second, the SCS model does not take into account
any differences in self-shadowing behavior that canopies of different
complexity exhibit as slope and aspect changes. Finally, the relation-
ship of canopy complexity and sunlit area may behave differently with
different solar zenith angles. (The latter two limitations apply to all the
correction methods discussed to this point.) These issues may have
contributed to the SCS equation's varying performancewhen tested by
Gu and Gillespie (1988) against forest images.

Summarizing, the SCS model explicitly equates the radiance from
a forested slope (L/Ln) to the sunlit area (A/An). The sunlit area,
and hence the shadowed area, was modeled by a geometric term
(herein the “SCS term”) related to the topographic slope and the solar
zenith angle. Gu and Gillespie (1988) expressed concern that the SCS
term might not accurately correct sunlit areas because of the
variability of conifer canopies. It follows from this reasoning that an
improved SCS term that was a function of canopy structure as well as
the existing geometric factors might provide improved radiance
correction.

Limitations of topographic correction models to deal with can-
opies of different complexity are a particular concern in the Pacific
Northwest. In this region, the height and age of stands permit a
range of stand complexities and resulting canopy complexities found
in few places of the world (Van Pelt and Nadkarni, 2004; Waring
and Franklin, 1979). Preliminary analysis of tree-shade models
confirmed that the range of canopy complexities would be a pro-
blem for topographic correction. More complex canopies produced
lower proportions of sunlit area than less complex canopies for
a given incidence angle. In addition, the change in sunlit area for
canopies of different complexities was not linear with change in
local SZA. These observations suggested that existing topographic
correction algorithms would not compensate for the change in
self-shadowed area across the range of canopy complexities. A
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method that adapts to the variable tree-shade behavior of canopies is
required.

2. Methods

2.1. Study area and field data

The Cedar River Municipal Watershed lies west of the city of
Seattle in the western front of the Cascade mountain range in King
County, Washington state, USA (47.4° N, 121.9° W). The Cedar River
Watershed has 34,591 ha of forests ranging in elevations from 170 m
to 1656 m. The lower part of the watershed lies in the western
hemlock (Tsuga heterophylla) vegetation zone, the majority the
upper watershed in the Pacific silver fir (Abies amabilis) zone,
and the very highest elevations in the mountain hemlock (Tsuga
mertensiana) zone (Franklin and Dyrness, 1988). Intensive timber
harvests began in the lower elevations in the 1920s, and proceeded
into higher elevations until harvesting largely ceased in the 1980s.
The majority of the Watershed's forests (84%) are less than 100 years
old and established following harvest (Erckmann et al., 2000).
Unharvested primary forests over 200 years old with mature and
old-growth stand characteristics account for the remaining forested
area (16%) (Erckmann et al., 2000). Young forests typically consist of
even-aged stands. While structural diversity is typically low in these
age classes, variation exists as the result of differences in establish-
ment, site productivity, and disturbance histories. The old-growth
stands are remnant patches found primarily in the Pacific silver
fir zone. These stands show considerable structural diversity that is
a product of differences in age, site productivity, and disturbance
histories.

The Cedar River Watershed managers maintain a network of 115
permanent sample plots laid out on an approximate grid throughout
the watershed. Of these 115 plots, 80 plots of predominantly
coniferous forest were selected for study. (Thirty-five plot sites were
eliminated either because of lack of forest cover, deciduous species
presence N5% by basal area, LiDAR point densities b0.7m−2, or missing
forest inventory data.) Stand ages for plots used in this study ranged
from 16 years to N300 years (with scattered older trees) and were
distributed by age as follows: b49 years: 21 plots; 50–99 years: 34;
and N200 years: 25.

Plot data were collected between July 2003 and October 2005.
Plot sizes varied from 0.04 to 0.16 ha (0.44–1.8 Landsat pixels),
with plot radius chosen to include a sample of a minimum of 25
live trees with dbh N12.7 cm. A handheld Global Positioning
Fig. 5. Examples of canopy surface models created over 60×60m areas from LiDAR data. An o
100, and a 95th percentile canopy height of 57 m. A young forest (b) has a rumple index of
System (GPS) reading was taken at the center of each plot. All trees
N12.7 cm dbh were recorded by species, dbh, and crown class with
dominant, co-dominant, and intermediate trees extending into the
stand canopy and overtopped trees standing entirely beneath the
stand canopy.

Each plot was ranked on a stand development scale to help
interpret its developmental stage. The Index of Old-Growth (Iog)
(Acker et al., 1998) compares stands using structural sub-components
of mean dbh (cm), standard deviation of dbh (cm), trees ha−1,
and count of trees with dbh N100 cm ha−1. Mean values for young
and old-growth stands collected by Spies and Franklin (1991) are used
to establish the minimum and maximum values for each component:

Iog ¼ 25 ∑
4

j−1

xj;obs−xj;young
xj;old−xj;young

� �
ð20Þ

where j is each of the four structural sub-components, obs is the
observed value, young is the mean value for young stands from Spies
and Franklin (1991), and old is the mean value for old-growth stands
from Spies and Franklin (1991). Sub-component scores are con-
strained to be no lower than 0 and no higher than 25. Iog scores for
plots used in this study ranged from 0 (4 plots) to 100 (3 plots) and
were distributed as follows: Iog=0–25: 20; Iog=26–50: 17; Iog=51–75:
28; and Iog=76–100: 15.

2.2. LiDAR data and analysis

LiDAR data were collected by Spectrum Mapping, LLC using their
DATIS II system during leaf-off conditions over the winter of 2002–
2003. The scanner used a unidirectional linear pattern with scan
angles of ±13.5° with a nominal ground footprint of 0.46 m. First
return point density for the plots used in this study ranged from
0.70 m−2 to 1.79 m−2 (mean 1.00 m−2). We used raw LiDAR data with
X, Y, Z, and return number values. LiDAR data was processed with a
beta version of the Fusion software package derived from release 2.51
(McGaughey and Carson, 2003; McGaughey et al., 2004; USDA Forest
Service, 2007).

A ground surface model for the entire Watershed was created from
the LiDAR dataset. The Fusion tool set was used to identify ground
points in the LiDAR dataset using a 9.14-m moving window. Then a
ground surface Digital Terrain Model (DTM) was created from the
ground points using the minimum value within a moving 7.62-m
window. Areas without ground points were filled by Fusion by
interpolation using adjacent values.
ld-growth forest patch (a) has a rumple index of 6.2, an index of old-growth (Iog) score of
1.5, an Iog score of 19, and a 95th percentile canopy height of 7.6 m.



Table 4
Solar illumination data used for tree-shade modeling and topographic correction

SZA 29° 33° 39° 49°

Equivalent image date June 21 July 21 August 20 September 19
Sun elevation 61° 57° 51° 41°
Solar azimuth 138° 139° 146° 155°

Solar zenith angles (SZA) were selected to match parameters for Landsat images of the
Cedar River Watershed (Path 46, Row 27 centered at 47° 27′ 30″N, 121° 52′47″W).
Illumination parameters calculated with the ENVI 4.0 remote-sensing software.
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For each plot, a subset of the LiDAR point cloud for a 60×60-m area
centered on each plot's GPS locations was created. The dimensions of
the subset were a compromise between including an area large
enough to sample the heterogeneity of taller stands (Van Pelt and
Nadkarni, 2004; Zenner, 2005) while minimizing the number of study
sites with areas that included points from adjacent stands with
Fig. 6. Relationship of the rumple index to stand characteristics for SZA=29°. The correlation
ShAflat R

2 values for other solar zenith angles of 33°, 39°, and 49° were 0.93, 0.91, and 0.87, re
increasing rumple index values. Because tree shade on flat terrainwas strongly correlated wit
decreases with greater stand complexity. All relationships were significant (Pb0.01).
different tree sizes. When creating the subsets, the elevation of the
ground surfacewas subtracted from the height of each LiDAR return to
produce a point cloud as it would exist on flat terrain (Fig. 1d–f). A
canopy surface model (CSM) was created for each study site from the
LiDAR subsets (Fig. 5) using a 3×3 smoothing algorithm. The cell size
for the CSMs was 1.52 m, which was selected as the smallest cell size
that produced realistic canopies.

Five metrics were calculated for each sample site from the LiDAR
data:

• Mean point height
• Standard deviation of point heights (also known as the rugosity
index, Parker et al., 2004)

• 95th percentile height
• Canopy cover (percentage of first returns N3 m in height divided by
total number of first returns)
with modeled tree shade on flat terrain was high (a) (values for other SZAs also shown).
spectively. Correlation between the rumple index and stand parameters decreased with
h the rumple index, the ability to extract stand characteristics frommeasured tree shade



Table 5
Coefficients of determination between plot-level stand characteristics and LiDAR data
(adjusted R2)

Rumple
index

Flat
shade

Iog P95 Mean
dbh

St dev
dbh

Basal
area

Rumple indexa

Flat shade (SZA=29°)a 0.94
Index of Old-growth (Iog)b 0.56 0.51
95th% height (m) (P95)a 0.60 0.52 0.53
Mean dbhb 0.65 0.60 0.65 0.67
Standard deviation dbhb 0.54 0.47 0.76 0.48 0.47
Basal areab 0.18 0.16 0.37 0.44 0.43 0.38
Trees ha−1b 0.18 0.17 0.32 0.10 0.25 0.09 0.00c

Linear regression relationships are shown (logarithmic regressions with higher R2 are
shown in Fig. 6). All relationships are significant (Pb0.05) except as noted.

a Calculated from LiDAR data using all first returns for each 60×60 m (0.36 ha)
sample site.

b Calculated from plot data (0.04–0.16 ha); since plots were smaller than LiDAR
samples used to model tree shade, plot data may not be representative of the entire
LiDAR sample area.

c Not significant.
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• Canopy surface area (including ground surface where gaps were
present) divided by the ground surface area (“rumple index”: Parker
et al., 2004). The rumple index was computed using a site's canopy
surface grid points to create a triangular irregular network of three
dimensional points, summing the area of all triangles, and dividing
by the ground surface area.

The height and canopy cover metrics were computed using first
returns with heights greater than 3 m to eliminate ground and under-
story returns.

2.3. Shadow-area correction

In order to model tree shade with different topographies and sun
angles, the LiDAR-derived CSMs were imported into ESRI's ArcGrid
software (release 9.2) as grid files. Each site's CSM was placed over a
series of artificial planes representing a range of azimuths from 0° to
Table 6
Results of the ASC regressionwith results for other options investigated for an empirical
shadow area topographic compensation solution

ASC: Multiple linear regressions by cos(i) range with indicator variables

Independent variable(s) SZA 29° SZA 33° SZA 39° SZA 49°

ShA (cos α cos θ)/cos i 0.937 0.937 0.888 0.834

Alternatives investigated for ASC regression
ShA cos i 0.899 0.905 0.864 0.857
ShA cos θ/cos i 0.897 0.896 0.850 0.853

Single linear regression for all cos(i) values with multiple geometric terms selected
through backwards stepwise selection. All terms were included.
ShA (cosα cos θ)/cos i, cos θ/cos i, cos i 0.876 0.869 0.817 0.810

Single linear regression for all cos(i) values with single geometric variable
ShA cos i 0.784 0.761 0.691 0.654
ShA (cosα cos θ)/cos i 0.860 0.742 0.477 0.403
ShA cos θ/cos i 0.810 0.702 0.467 0.403
ShA 0.529 0.439 0.309 0.201

Mathematical functions
SCS+C (Eq. (9)) 0.73 0.66 0.51 0.36
SCS (Eq. (10)) 0.14 0.11 0.02 0.00

Regression options shown in order of descending compensation accuracy. The ASC
regression used the (cosα cosθ)/cosi variable, and performed multiple regressions by
ranges of cos(i) variable using indicator variables. The ASC regression had the highest
performance of all options except for SZA 49°, where an alternative form using the cosi
variable had slightly higher accuracy. Where multiple variable options were
investigated for a single approach, the highest R2 value for each SZA is shown in bold.
All regressions and regression variables were significant at Pb0.001. Regressions
conducted using SPSS release 15.0.
180° relative to the sun in increments of 15° and slopes from 0° to
54.5° in increments of 10% slope. (ArcGrid measures slope in percent
calculated from rise/run.) ArcGrid's hillshade function was used to
artificially illuminate the CSM using the solar illumination angles for
four solar zenith angles (SZA) (Table 4). The SZAs were chosen to
represent the smallest local solar zenith angle (summer solstice) and
the change in solar illumination at 30-day intervals at theWatershed's
location (SZA's of 29°, 33°, 39°, and 49°). For each slope, azimuth, and
SZA, each grid cell of the CSM was marked by ArcGrid's hillshade
function as either illuminated or shadowed by canopy elements
within the scene. Fig. 3 shows example output grids. The total number
of shadowed cells were summed and divided by the total number of
cells to give the proportion of canopy shadowed.

This modeling effectively created a “landscape” of “hills”with slopes
ranging from 0° to 54.5° and azimuths ranging from 0°to 180° relative to
the sun (183 slope-azimuth combinations). Each of the 80 hills had a
single stand type representingoneof thepermanentplot sitesdistributed
across the combinations of slope and azimuth. This provided 58,560
slope-azimuth-stand-SZA combinations to measure the proportion of
sunlit and shadowed area to enable testing of the different topographic
corrections: (13 slopes×14 aspects)+(0° slope))×(80 CSMs)=14,640×4
SZAs. The study tools used did not rotate the CSMs, so a single aspectwas
used for slope=0°.

Gu and Gillespie's mathematical derivation of the SCS equation
provided an intermediate form (Eq. (13)) that could be used to test the
accuracy of the SCS term for real forests measured by LiDAR. From the
modeling of sunlit and shadowed areas with ArcGrid, this present
study had for each of 58,560 slope-aspect-SZA-stand combinations the
actual value of the ratio of A/An (uncorrected sunlit area to corrected
sunlit area). This value could then be compared to the value for the SCS
term (Eq. (19)) to test Gu and Gillespie's assertion that the SCS term
estimates A/An for complex, real forests. Both the SCS and SCS+C
corrections were tested by substituting the A and An terms for L and Ln
(Eq. (14)), and the C termwas computed by substituting A=L in Eq. (7).

3. Results

3.1. Relationship of tree shade to stand characteristics

Tree shade correlates stronglywith the rumple index (Fig. 6; Table 5).
Correlations of tree shade with the rumple index decreased as the SZA
increased but remained high (R2=0.94–0.87 depending on SZA). Tree-
shade correlationwith stand parameterswas higher for parameters that
Table 7
ASC regression equations

ASC regression by cos(i) range

SZA=29°
cos(i)≥0.8 ShAn = 0.204 + 1.183 × ShA− 0.226 ×SCS
cos(i) 0.5–0.79 ShAn = 0.183 + 0.913 × ShA− 0.172 ×SCS
cos(i)b0.3–0.49 ShAn = 0.145 + 0.703 × ShA− 0.115 ×SCS
cos(i)b0.3 ShAn = 0.054 + 0.572 × ShA− 0.052 ×SCS

SZA=33°
cos(i)≥0.8 ShAn = 0.242 + 1.235 × ShA− 0.278 ×SCS
cos(i) 0.5–0.79 ShAn = 0.211 + 0.952 × ShA− 0.202 ×SCS
cos(i)b0.3–0.49 ShAn = 0.159 + 0.771 × ShA− 0.131 ×SCS
cos(i)b0.3 ShAn = −0.031 + 0.648 × ShA− 0.028 ×SCS

SZA=39°
cos(i)≥0.8 ShAn = 0.299 + 1.275 × ShA− 0.361 ×SCS
cos(i) 0.5–0.79 ShAn = 0.255 + 0.998 × ShA− 0.253 ×SCS
cos(i)b0.3–0.49 ShAn = 0.185 + 0.864 × ShA− 0.165 ×SCS
cos(i)b0.3 ShAn = −0.091 + 0.611 × ShA− 0.005 ×SCS

SZA=49°
cos(i)≥0.8 ShAn = 0.133 + 1.143 × ShA− 0.001 ×SCS
cos(i) 0.5–0.79 ShAn = 0.311 + 1.036 × ShA− 0.320 ×SCS
cos(i)b0.3–0.49 ShAn = 0.207 + 0.976 × ShA − 0.206 ×SCS
cos(i)b0.3 ShAn = −0.095 + 0.684 × ShAa

All regression coefficients significant (Pb0.05) except as noted.
a SCS correction term for this illumination geometry not significant.
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measured tree size (95th percentile height andmean dbh), but lower for
other stand parameters (canopy tree count and basal area). Correlation
of tree shade with the composite Iog index was intermediate. Correla-
tions of tree shadewith standmetrics were constant across the range of
SZAs (R2 changes of less than b0.02). Attempts to use combinations of
stand parameters in multiple regressions to predict tree shade had
similar R2 values as the individual parameters. The most successful
multiple regression had an R2=0.73 and used the standard deviation of
LiDAR point heights (“rugosity”) and 95th percentile heights as
variables. Canopy tree count and basal area were not significant
predictors.

3.2. Topographic tree-shade correction

Two problems were found with the SCS correction. First, the SCS
term provides a fixed value for each slope-aspect-SZA combination
(Fig. 4). The LiDAR A/An ratio, however, differed for every stand. As a
general trend, stands with rumple indices b2 had A/An curves that
were distinct from stands with indices N2. None of the A/An curves,
whichwere derived from real canopy surfaces, matched the SCS curve,
Fig. 7. Correction accuracy for four canopies using the SCS and ASC corrections. Differences betw
same data plotted against different corrected value ranges to allow comparison with (a) and (d
relative to the sun). The 0° slope values are the correct ShAflat values. Breaks in the correction t
whichwas predicted for an idealized canopy surface (Gu and Gillespie,
1988). As a result, the SCS correction would fail to give accurate
corrections for any of the real canopies used in this study, and the
degree of inaccuracy would depend on the canopy characteristics of
each stand. The second problem with the SCS correction was that it
would over- or under-correct on steep pro- and anti-sun slopes. The
combinations of these problems led to inaccurate corrections for
shadow area (Table 6).

The SCS+C correction was formulated to mitigate the problems of
SCS over correction of radiance for steep slopes (Soenen et al., 2005).
The SCS+C correction provided substantially more accurate correc-
tions for all SZAs than did the SCS correction (Table 6). In interpreting
the SCS+C results, it is important to keep in mind that the C termwas
initially proposed as both a way to moderate the over correction
inherent in the cosine correction (Eq. (3)) and to model the effects of
diffuse sky illumination (Soenen et al., 2005; Teillet et al., 1982).
Because our testing does not include the latter factor, the results
presented here may not be representative of the performance of the
SCS+C correction in real images. The SCS+C correction was also
intended to be applied on a per band basis prior to spectral analysis.
een ShA and ShAflat prior to correction also shown for comparison (a). (b) and (c) show the
). Results are for SZA=29°. Slopes shown are in the principal plane (azimuths 0° and 180°
rends in the ASC correction caused by the use of multiple regressions by cos(i) range.
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Applying this correction to shadow area as an estimate of the Shade
fraction that would be derived after spectral unmixing, may not be
appropriate.

Because the A/An curve was unique for each canopy tested,
empirical approaches to shadow correction were attempted. A
number of different linear regressions were developed and tested
for their accuracy in correcting ShA for topographic and SZA change
(Table 6). Regressions using any single or combination of geometric
variables had an R2=0.00, and regressions using only the shadow area
variable (ShA) had poor compensation accuracies. However, including
at least one geometric termwith the ShA term substantially improved
regression results. Regressions that used either the (cosα cosθ) /cosi or
cosi variable for the geometric term had the highest accuracies.

The most accurate empirical correction was termed the Adaptive
Shade Compensation (ASC) algorithm and was based on two
independent variables. ASC incorporated the shadow area proportion
(ShaA) as an estimator of canopy complexity and the inverse of the SCS
term (Eq. (19)), (cosα cosθ) / cosi, as an estimator of how the
Fig. 8. Correction accuracy for two for shadow area compensations for two solar zenith angl
ShAflat−ShA for uncorrected and ShAn−ShA for corrected values. Perfect correction would have a
different Y axis than the other two corrections. The ASC regressions produced the most accura
proportion of shadow area changed based on the geometry of the
scene:

ShAn ¼ b0 þ b1ShAþ b2
cosα cos θ

cos i

� �
ð21Þ

(‘Adaptive’ refers to the use of a term that estimates canopy
complexity, ShA, and therefore modifies the correction with informa-
tion about the canopy structure.)

Examination of residuals from the initial ASC regressions
suggested that deriving separate regressions for ranges of cos(i)
values would improve accuracy. Indicator variables (Kutner et al.,
2004) were used to divide the data set for the regression into four
ranges of cos(i) values based on residual patterns: cos(i)≥0.8, 0.5–
0.7999, 0.3–0.4999, b0.3. A separate regression for each incidence
angle range was derived (Table 7). Examination of the significance of
the regression coefficients for each subset of the data was used to
determine whether the regressions were statistically distinct.
es (SZAs) with uncorrected values for comparison. Each point is the difference between
ll points lined up on the zero residual value. Residuals for the SCS correction plotted on a
te corrections across all cos(i) values and canopy complexities for both SZA illuminations.



Fig. 9. Accuracy of the ASC topographic compensation method for four solar zenith
angles (SZA). Each point is the standard deviation of ShAflat−ShA for uncorrected and
ShAn−ShA values for a single plot and SZA.
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Results of the ASC regression are presented at three levels of detail
to show different views of the of shadow area correction accuracy as
topography and SZA changed: (1) correction residuals (ShAflat−ShAn)
for a single SZA for slopes on the principal plane (Fig. 7), (2) correction
residuals by cos(i) and canopy complexity for two SZAs (Fig. 8), and (3)
standard deviation of correction residuals by canopy complexity for all
SZAs (Fig. 9). Residuals are reported to simplify comparison of
accuracy between methods and SZAs. As with all correction methods
tested, ASC corrections were least accurate for steeper slopes and
higher SZAs. However, the multiple regressions by cos(i) range of the
ASC regressions mitigated the under-correction on anti-sun slopes
inherent in the SCS correction.

4. Discussion

4.1. Sources of spectral shade in forest scenes

A large body of work has focused on understanding the reflectance
behavior of forests (e.g., Franklin et al., 1991; Li et al., 1995; Verhoef,
1984). Less work has been devoted to understanding the relationship
between canopies and Shade. Self-shadowing caused by canopy
roughness (along with the geometry of the incidence and exitance
angles) has a major effect on the reflectance observed by a sensor
(Dymond et al., 2001). In addition to tree and topographic shade, three
other sources of shade contribute to the observed shade in forest
scenes (Gillespie et al., 2006):

• Small-scale shadowing from fine structures of a tree such as leaves,
needles, and small branches (leaf shade)

• Changes in incidence angle across the surfaces of the individual
elements of the tree (geometric shade)

• Absorption of light by the tree's surfaces

Gillespie et al. (2006) found that these factors vary with tree
morphology, stand structural stage, species, and possibly tree age in a
mixed forest in Maryland, USA. Tree shade had twice the mean
contribution to SMA Shade as leaf shade. Gillespie et al. (2006) found
that more work is needed to understand the contributions of
geometric shade and absorption. Topographic shade was not a factor
because their study site was flat.

The high values for tree shade for many stands in flat terrain in this
study is in line with Gillespie et al.'s (2006) finding that tree shade is
the dominant contributor to Shade in forest scenes. However, the
methods of our study probably overstate the contribution of tree shade
to the actual Shade fraction in a scene. The CSMs created using the
Fusion software represents trees as solid, opaque shapes. Real conifer
trees have unresolved gaps between branches that permit some light
to brighten the tree shade. Similarly, ArcGridmodels only light coming
from themodeled sunposition. It cannotmodel diffuse skylight or light
reflected off of nearby canopies or hills. All these sources will brighten
the tree shade in the spectra of a real forest canopy. On the other hand,
other sources of canopy Shade such as leaf shade will serve to add
Shade to each pixel. The shadowarea corrections donewith ASCwill be
more accurate if the tree-shade models prepared with LiDAR data are
first calibrated against measured Shade fractions in an image.

4.2. Interpretation of tree shade

The Shade fraction of an image has been used in a number of forest
studies as a measure of either canopy roughness or canopy structure.
This study supports this interpretation. Our goal in pursuing this line
of inquiry had been that modeling tree shade from canopy LiDAR
datasets would allow better estimation of traditional stand measure-
ments such as tree size, basal area, and density that have proven
difficult to derive frommoderate-resolution scanners such as Landsat.
Our results do not support this expectation. For example, the
moderate correlation between tree shade and stand height
(R2=0.60), was unexpected (Fig. 6).

The low correlations between tree shade and traditional stand
measurements are in line with those from a study that compared
results from multiple remote-sensing methods for Pacific Northwest
forests (Lefsky et al., 2001). That study compared a Tasseled Cap
transformation of a Landsat TM image and a principle components
analysis of an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) image (25-m resolution). Lefsky et al.'s results combined
with those from this study suggests a fundamental limitation to the
ability to estimate many of the stand measurements that have
traditionally been used by forest managers and ecologists using data
from medium resolution optical instruments alone.

Forests are heterogeneous and have ranges of combinations of
structural characteristics. Forest ecologists have not been able to
develop a single metric that captures this complexity and typically
describe structure as the combination of traits (e.g., mean dbh,
standard deviation dbh, and tree count). It is not surprising that a
single measure of stand structure, the rumple index and its associated
tree shade, cannot capture that complexity.

For example, the correlation of tree shade with tree size in this
study was moderate (Table 5). The common view is that tree size is
associated with the development of stand complexity (Oliver and
Larson,1996), which in turn creates canopy complexity and higher tree
shade. Our data show that while short stands have less tree shade,
taller stands can have a wide range of tree shade. This supports the
observation that stands follow a large number of developmental
pathways. Large trees are necessary to create higher ranges of stand
complexity but are not a direct correlate. Variation in size, spatial
arrangement, and the number of trees all influence the canopy
complexity made possible by the stand height. The moderate
correlation of tree shade with plot characteristics is in line with the
correlation of different plot measurements. In the plots used in this
study, for example, mean dbh and 95th percentile height have an
R2=0.67 (Table 5). This is similar to the correlation between the rumple
index and mean dbh (R2=0.65) or 95th percentile height (R2=0.60).

Canopy complexity appears to be an emergent property of the
unique combination of processes – stand establishment, competitive
exclusion, disturbance, and human management – that shape each
stand. Amajor source of ambiguity in interpreting tree shade is that the
relationship between the stand structure – the size and arrangement of
trees – and canopy complexity – the geometric shape of the canopy
surface – is poorly understood. Fully exploring this relationship
requires spatially explicit maps of stand trees and the surface of the
canopy. Studying patterns of canopy complexity through tree shade
allows canopy complexity to be studied across large areas.
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A growing body of work has started to explore the relationship
between canopy complexity and stand development (Bradshaw and
Spies, 1992; Franklin and Van Pelt, 2004; Ishii and McDowell, 2002;
Larson and Franklin, 2006; Van Pelt and Nadkarni, 2004; Winter et al.,
2002b). Disturbance or management history can be deduced from
differences in the geometric canopy complexity (Zenner, 2004, 2005;
Zenner and Hibbs, 2000). The habitat value of young, second-growth
stands varies with stand and canopy structural complexity (Aubry
et al., 1997; FEMAT, 1993; McKenzie et al., 2000; Parker et al., 2002).
Knowing that tree shade correlates with an emergent ecological value
creates a new way to study forests.

4.3. Topographic shade correction

Gu and Gillespie (1988) had no way to measure the sunlit area of
the canopy directly to determine how accurately the radiance SCS
correction (Eq. (8)) estimated the actual sunlit area. Instead, they and
Soenen et al. (2005) used modeled canopies and modeled radiance
with a single SZA each to measure how accurately the SCS equation
estimated the relationship between canopy structure and changes in
sunlit/shadowed area with topography. Both of those studies reported
accurate corrections by the SCS equation for low to moderate slopes,
indicating that the SCS equation worked well for idealized canopies.

The SCS correction was developed using modeled tree stands with
heights of 15 m and tested on a scene with trees of similar size (Gu and
Gillespie, 1988). The work reported here examined a more complete
range of tree heights; just 15 of the 80 plots used in this study have 95th
percentile heights below 20 m. In the comparatively simple stands
modeled by Gu and Gillespie (1988) and Soenen et al. (2005), the SCS
termcorrelatedwellwith changes in sunlit area. This correlation appears
to break down for more complex canopies, at least as assessed by LiDAR
data in which canopies are modeled as solid shapes without the small
gaps that characterize real ones. Theunexpectedlypoorcorrelationof the
SCS term (Eq. (19)) with the A/An ratio can be seen in the inaccurate SCS
correction results even at lowandmoderate slopes (Fig. 7). This source of
inaccuracy, however, was overwhelmed by the SCS equation's over- and
under-correction on steep pro- and anti-sun slopes (Figs. 8 and 9).

The empirical ASC regressions, on the other hand, showed
comparatively little variation in correction accuracy with changes in
canopy complexity or for steep pro- and anti-sun slopes (Figs. 7–9).
Like the C (Eq. (6)) and SCS+C (Eq. (9)) corrections, the ASC regressions
combined a geometric term (the inverse of the SCS term, Eq. (19)) and
an empirical term (shadow area, ShA, as an estimate of the tree-shade
component of the SMA shade fraction). Unlike the C and SCS+C
equations, however, the ASC regressions have coefficients that
allowed the interaction of the SCS and ShA terms to vary. This models
real canopies where the shadow area for a given slope-aspect-SZA
combination varies with canopy complexity. In doing so, the ASC
regressions met the requirements set out by Schaaf et al. (1994) that a
full understanding of the bidirectional reflectance distribution func-
tion for forests requires knowledge of both the geometry of the image
and the structure of the forest canopy.

The ASC method should be robust across a variety of conifer forest
systems. However, the ASC regression coefficients computed for this
study are specific to the given SZA's and closed-canopy conifer forests.
In order to facilitate the use of the ASC technique for other studies, the
CSMs and computer tools for modeling tree shade and topographic
shade are available from the corresponding author. For studies of
forests with canopies that are substantially different than those in the
Pacific Northwest, the tools can be used with the CSMs created from
LiDAR data of those forest types.

5. Conclusion

This study used LiDAR data to model changes in a dominant
contributor to Shade in canopies, tree shade produced by canopy self-
shadowing, in Pacific Northwest forests. Tree shade correlates well
with the geometrical complexity of canopies, but less well to common
stand measurements such as tree height, diameter, and count. Tree
shade is an emergent property that results from tree size, variations in
heights within canopies, and tree spacing. Because many combina-
tions of these variables can produce the same tree shade, it is difficult
to estimate the relative contribution of each factor. As a result, remote
sensing that uses the Shade to estimate stand structure will be limited
in its ability to provide information on plot characteristics that have
been traditionally used for stand management and ecological studies.
The results in this paper, however, support interpretation of Shade as a
function of canopy complexity, which is an important ecological
characteristic in its own right.

Theuse of tree shade tomeasure canopycomplexity has been limited
by the strong effect of topography on tree shade. Several approaches
have been proposed to improve topographic radiance correction of
forest scenes, including the Sun-Canopy-Sensor (SCS) algorithm.
Because SCS corrects radiance by correcting the area of sunlit canopy,
it can also be used to correct its complement, the area of shadowed
canopy. SCS has limitations that prevent accurate correction of
topographic tree shade across a full range of incidence angles and
canopy complexities. This study developed a new approach, the
Adaptive Shade Compensation (ASC) algorithm that combines
the geometric approach of SCS with an empirical term that uses the
measured Shade proportion as an independent variable. This allows the
regression to compensate for the change in self-shadowing behavior as
canopies become more complex. The ASC approach provides more
accurate topographic correction of tree shade across the range of tested
solar illumination angles, incidence angles, and canopy complexities.
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